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SIGNIFICANCE AND EXPLANATION

This is a follow-up on the-MR TSR #2485 in which we introduced and

studied interpolation by a linear combination of translates of a bivariate box

spline on a three-direction mesh. This is of interest because these box

splines are not just tensor products of univariate B-splines but are genuinely

bivariate, yet are true generalizations of the univariate cardinal B-spline.

This allows one to be guided by Schoenberg's highly successful analysis of

univariate cardinal splines, while at the same time struggling with a more

complicated setup.

The specific task of the present report is the derivation of necessary

and of sufficient conditions for the convergence of the box spline

p .interpolants as the degree goes to infinity. The conditions are stated in

terms of the Fourier transform of the interpoland.

The responsibility for the wording and views expressed in this descriptive
summary lies with NRC, and not with the authors of this report.
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Denote by n' the "middle" component of n, i.e., the second number

in any ordering of nl, n2, n3. We write

n + N

if a sequence n(m), m IN, satisfies

(nI) n'(m) * as m +-,

(n2) lim n() -N c [0,-]
M n r(m

• N'. • V

Further, we assume that

0n3) Int n- I + n 2 + n 3 <c(n,)c

where c is some positive constant. Examples of admissible sequences are

n(m) = (m,2m,3m) with N = (1/2, 1, 3/2) ,

2
n(m) (1, m, m2 ) with N - (O,1,-).

The assumption (n3) excludes degenerate cases like n(l) = (l,m,mt).

The role of the interval (-,w) is played by certain domains

corresponding to the limit of the sequence n. For N c (OM)3  they are

defined by

(4) RN:- (2x: 0 < aN,j(x) < 1 for J J",

where Js- (*(l,0), ±(,1), ±(l,-l)) and for x - (u,v), J = (k,t),

u I v __)2 u+v ]3. % 'g''
(.5) a~N.J(x) =:k' , vg Jtu~~+t:

Clearly, the set i is bounded by the curves rN,J : = (2wx: aNj(x) 1 I),

-3- --
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j c J. If one of the components of N equals - the sets QNas weill

as the curves r Njhave to be interpreted as the appropriate limits

(cf. Proposition 2). A qualitatively correct picture of SIN is given in

Figure 1. Figure 2 shows a few special cases. Of particular interest is

the syrme tric case N -(,,)

r 

,,

Figure 1

N -(1,1,1) N -(1,0,1) N (l1)
(r., -20r

4 Figure 2

A detailed discussion of the properties of the sets % is given in [31.

W~e merely note that they are fundamental domains, ioe., up to a set of

Measure zero, their translates 21rj + j, J z, form a partition of 143

-4-



Our first result is an extension of Theorem 5.2 in 131 to include

interpolation of data with power growth as was done in [71 for the

tnivariate case.

Theorem 1. Assume that the Fourier transform of f is a tempered

distribution with supp f c Q.. If the sequence n satisfies (ni) - (03),

then, for any a E Z th. partial derivative D a I of the cardinal

interpolant converge locally unif ormly on R 2to D af, as n + N.

As for the univariate case, the converse of the above Theorem holds

with mc V~ replaced by OE. T g:

Theorem 2. Assume that the segug'ence n satisfies (ni) - (03). If a,

s*Squence of cardinal spline. an e S n converges locally uniformly to f

and If 1 (nx) I c(l + lxi )C for all n and some c > 0, then

supp f Cd

We may relax the assumption (n2). Clearly any subsequence of n

also satisfies (n1) and Wn). If (N .) are the limit points of the

sequence O/n' then one has to replace the set asin the Theorems by

n The figure below shows the intersection Al and the union A of
Oa

all possible limit sets.

Figtire 3

-5-%
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2. Proofs. We assume throughout that the sequence n satisfies

(ul) - (n3). By c we denote various positive generic constants which

do not depend on n. These constants may change even within the same

line. Further, we set

(1) dn (x) :- dist(x, a1n)

and denote by xn  the characteristic function of the set 1nn
Denote by L n Sn the fundamental spline which interpolates the

2
data 60k, k e 2 . It is easily seen 13) that 1.n decays exponentially

at infinity. Therefore, if we, e.g., assume that

(2) If(x) j <C( + Ix ,

then we can write the cardinal interpolant in Lagrange form

(3) 1n f - z2 f(J)Ln('-J)"

The proof of Theorems 1 and 2 is based on the following estimate for the

Fourier transform of La which will be derived at the end of this

section.

Theorem 3. F an 0 and a e Z+ there exists n' such that for

y e > 0 and + 0r

n' >n and d(x) > e

(4: ) a I°(n(x) - XN(x))I 1 ( cd(x))-

Proof of Theorem 1. Denote by S [4) the space of rapidly decreasing test
functions # cR 2 . The assumption f c S' and supp f c N implies (2)

and hence the representation (3) is valid for the cardinal interpolant.

Set

-6-
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f : f(J)e-iJ

IJI<K

Since % is a fundamental domain which contains supp f, the values

f(-J) - (2%)-2<, eiJ>

are the Fourier coefficients of f. Therefore 1K converges in S' to

the periodic extension of f:

IIf" :- f(- + 2ij).

This means that there exists y z Z+ such that for any # e S,

(5) d ' - fK' *>I -0(l) - 1#1 , as K +

where

,4,1 :- max sup2 lyaD54 y)J

Note that (5) implies

(51) I<KS>l >I _< '1,

uniformly in K. Putting #(y) :- (iy)aeLxy we can write the difference

(2w)2 Da(f - inf)(x)

in the form

<1,#>- li. <fK'C .#,
K..

d, (1-C n )#> - lim <I-f, t>.

Since supp I c the first term can be estimated using Theorem 3

-7-
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with e :- dist(supp M, N)/2. For the second term, we choose a

cut-off function w e S with supp w c 2 :- (%N U ty: dN(Y) < e)) and

with w(y) - I for y e a/2" Since ((2wj) + supp ?) n supp w = 0 for

j * 0 and supp f n supp(o-w) - o we have

The first term tends to zero as K + -. As to the second term note that

dist (supp(1-v), N) > e/2, which by (4) implies

I(1-w)Ln * + 0, n + N.

It follows that

Ido- lim d K , C>nK.-

tends to zero, uniformly for bounded x (cf. definition of *).

Proof of Theorem 2. Let # c S and assume that supp n n .-. If the

sequence sn c Sn  converges locally uniformly to f then (2) holds and

we have

<f , i> - la Cli. <8 <n(j )L .--J), )
n +N K,*. IiI <K

Let A := + (-j-) denote the Laplace operator. Since t
12

together with all its derivatives vanishes at infinity, we have

<n(j)L(--J), > - <9n ()eij" Ch, o

M <(1 + lj 12 )- 2- c /2  ()e-iJ (,A) 2+c/2(,)>.

-8-
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Applying Theorem 3 with E - dist(supp , N) > 0 we have for

sufficiently large n',

< ...>1 j c( + Ill2 --2[sup( , + I1j2)c2 1 .(2)1 (1 + cc)-',

.5It follows that <t,*> - 0.

For the proof of Theorem 3 we make use of the following precise

estimates for C and the numbers a which have been derived in [3).
n ntJ

Theorem 4 [3, Thm. 5.2].

Si
(6) l n(x) - Xn(x) < c(l + cdn (x ) )

-n ' .

5,,

4" Proposition 1. [3, Prop. 5.2, Lemmas 6.5, 6.6]. Set J' :

*" {±(1,1), ±(2,-1), ±(-1,2)}. Then, for (2wx) £ 2n, we have

(1 + c dist(2wx, r rl na))n j c

(7) Ijan,(X) I (I + c dist(2rx, -J/2))-n', j C J,

(I +c IjIfn', j CX2 \ {jU ' JU 0)

Proposition 2. [3, Prop. 5.1]. Rn depends continuously on n in the

Hausdorff topology.

The reader who compares these statements with those in [3] will notice

that we have slightly changed the notation. Note that the estimate (6) is

stronger than the assertion of Theorem 3 for a - 0 since the constants

c in (6) do not depend on the distance of x to 3n"

-9-
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,* We need the analogue of estimate (7) for the derivatives of an,.

nj

Lemma 1. For any 6 > 0, there exist constants c6 , c and n0 (6) such

that for all n' > n0  and 2wx c n

[I +c dst(2wx, r n, j f an) - ', j j

(8) JDIn '(xj j 6(1 + G)n' [I + c dist(2Zx, -j/2)]n, j £ J'

[I + clnI. . CZ2 \(j U j, U 01.

The proof of this Lema is technical and we postpone it until the end.

Proposition 3. Let x' - z + j with j Z2 \0 and 2 wx 2n. Then,

0 > 0, there exist constants c6, c and n (6) such that for

alln'>o

(9) IDa (XI < c6( + . )(I + cdn (2,, '.

For a - 0 this is Proposition 5.4 in [3). There we bounded the terms in

square brackets on the rigta hand side of (8) by (I + cdn(2wx')) which

appears on the right hand side of (9). Clearly, the case a # 0 can be

treated in the same way.

Proof of Theorem 3. Since

%, = 2n{ x )

- - 1 2 an~ Wx,
L(2wx) Mn(2xx) J2 nj

we have, for l01 - 1,

(2w)DcICh(2wxc) - -Cn(2xx) 2  1 Da (x) .
J*J

for arbitrary a 0 if follows that

-10-
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(2v)11 D0 C (2wx) -
(10)

0 DL(x 02. -- 01-02
SOP CnLn(2wx)D anj W.

j 0 01 +02< a

Let us first assume that 2wx e On. We claim that for any 6 > 0

there exists c, such that

-a,0
(11)D* D0 n(21c)l<c(+ C6nol+c (2vx)) _0, 2wx e Q

n n

For a - 0 this is a weaker statement than the assertion of Theorem 4.

Using induction on lal it is sufficient to show that

I D a (x)

n00

can be bounded by the right hand side of (11). Leia I yields

ID~aJ~~l c6(L ca)n' (I + cd n( 2 wx))"" j 1

{( + cli I)" , j C"'.\ ( U J, U 0)

Suming this inequality over j c 2\0 finishes the proof of (11).

Secondly, let x' - x + j with (2wx) c Q. Then, writing

C n(2vx') - C n(2wx)a nj(x),

we see that

DaC an(2vx') " c 0D (2wx)DtoaJ (x)

Therefore, by (11) and Proposition 3, Dn can be estimated by

-11-



(12) 10 n D (2wx') 1 <C6(1 + c6)' (O + cdn(2lx')>-n'

x' a x +.J, 2'wx c

Theorem 3 easily follows from the estimates (11) and (12): Let c > 0

and assume that dN(2wx) > e. We choose n6 so that dn(2wx) > dN( 2wx)/2

for n' > n6. Now (11) and (12) give (4) since we can choose 6

sufficiently small.

Proof of Lemma 1. In proving (8) we make use of ttbe symmetries of the

nesh. If A is a linear transformation which leaves the set J

Invariant, we have

an,Aj (Ax) - a,j (x)

where n is the appropriate permutation of n. Similarly,

Ala - Q;.

From this one can check (cf. [3, section 31) that one may assume, by

changing n if necessary, that x :- (u,v) lies in the first quadrant.

Further, since the roles of u and v may be interchanged and

(2wx) c n , Q ' (cf. Figure 3) we shall assume throughout this proof

that

(13) 0 < v < u < 1/2.

By definition (1.5) of an,j we have

-12-



(14) _____I___n1 0 In 0 30

Lu.1n1+84 iv+1 12+ 5 lu+V+k+lIn+06 j
where the sun is taken over all 0 which satisfy

0 < Ov nV, v - 1,2,3,

6

-I
(15)) I k-O 

v-I

v as -i 3+v  in case - 1 0 v 2

k+L - 0 v 3.

This last restriction comes from the fact that, e.g., for k 0 0, the

factor u n 1 Is equal to 1, hence does not figure in the differentia-

tion. To estimate the individual summands in (14) we consider 4 cases.

Unless (k,S) e ((0,-I), (-1,1)) (cases (ii)(b), (c)) we bound each

sumasnd 1... on the right hand side of (14) by

(16) c a(0 + On'mxO+ lj)n. aJxl<">mmx "((1 + clii )"' *ta •~xI

(1) v < 6 < 1/4, u j 1/8:

Using the inequality

(17) IjI - (11+ cjq )-1 q c Z\ 0, jp < 1/2 -

we obtain the estimate

-13-
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-n +0-

1 1- .-' + -nl+ 1 1 -2+0 2  (+ P -n 3 3

'..'

II c nvoling ( Bj +8)

with c involving term like Iu+k , k * 0, which are bounded.

Since at sost one of the components of n is less than n', this implies

(8).

() v< < 1/4, u > 1/8:

We consider several subcases.

a,(a) (k,t) A {(0,I), (-1,1)1:

We have

" (18) Ii[e . < c(i + c i t ) - 2 2 -- 3

This can be estimated as before unless k - -1 or k+t - -1. If k - -1

and I * 0,1 we can write the right side of (18) as

*ci+di)22 l ( fu+v-I in3

-n

The last factor is less than (1 + c+i ) J and, since for 2w(u,v) e a"n

l,,,_ ,,o,.v)l < 1,. (8) follows. If (k,A) - (-1,0) it is easily

* .. seen that the left hand side of (18) can be bounded by ctlan,(_l,o)(UV)I .

The cases k + I - -1, k * 0, -1 are treated similarly.

(b) (k.1) - (0,-1):

Set n 0 : (n1 , n2-O2, n3). By Proposition 2, there exists

U - n0 (a,6) so that the boundaries of On and 0n are within 6 of

the boundary of the limit set 1L for n' > no  and all 02 satisfying

-14-
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(15). Moreover, n ' < _ 2n, ' > n0"

For u+v < 1/2 (and n' > n we obtain, using also Proposition 1,

S0Ic.- l nl' ,.(0.-,) ( .v I

c(1 + c dist(2irx, r (O_) n a

< (, + C6)n' (I + c dist(2wx, (o_ 1) rn a -n'

For the last inequality we have used that

diet (rn,,(O,_l ) n sin,9 n,'(O,_1) n n) _1 6.

For 1/2 <u+v< 1/2+ 6 we have

.. clrvI n2- 21 u+v i n 3I --- 1 - v T=T , -'
2 2u+v n3 i1-.11

where we have used that an, (..ou,v) < 1. By our assumptions on u

and v the minimum can be estimated by (1 + c6)n . Therefore, if

n2 > cn', (8) follows. If lim n2/n' - 0, the curve rn,(O,-l) n n

converges to the segment (2w(u,v): u+v = 1/2, (u,v) > (0,0)). Therefore,

we my assume that

dist(2wx, rn,( 0 ._) n %)1 < ca

for n' > n o  and (8) follows.

(c) (k,I) - (-I,I):

We have

-15- t
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< CO +c) n (1 0+ c(1/2-u))-.

Sine r,(-,I)does not intersect the square [0,uJ x (-w,OJ, this

implies (8).

(iii) 6<v, u < 1/2 - 6: Since v < u. we have

Uw~.5 C61uI+ j(x)I

(iv) 6(<v, u >1/2-6: Wehave

I [.--1 ]I. c.Ia.,j(x)lI u~ 0

Assume eeg., that aI- min(n1 ,n 2) Since 2wx e 0 n

I a n.(-lO)(x)I T- u v 1

From this and the fact that u > 1/2 - 6. '6 n3 ' we have

____ 06_ 1 -n 3  < (0 + cO n

~**I . c6Ia n,j(x)I(l + c6)nl

-16-
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